9 research outputs found

    The spacetime in the neighborhood of a general isolated black hole

    Full text link
    We construct the spacetime in the vicinity of a general isolated, rotating, charged black hole. The black hole is modeled as a weakly isolated horizon, and we use the characteristic initial value formulation of the Einstein equations with the horizon as an inner boundary. The spacetime metric and other geometric fields are expanded in a power series in a radial coordinate away from the horizon by solving the characteristic field equations in the Newman-Penrose formalism. This is the first in a series of papers which investigate the near horizon geometry and its physical applications using the isolated horizon framework.Comment: 23 pages, 1 figur

    Multipole Moments of Isolated Horizons

    Full text link
    To every axi-symmetric isolated horizon we associate two sets of numbers, MnM_n and JnJ_n with n=0,1,2,...n = 0, 1, 2, ..., representing its mass and angular momentum multipoles. They provide a diffeomorphism invariant characterization of the horizon geometry. Physically, they can be thought of as the `source multipoles' of black holes in equilibrium. These structures have a variety of potential applications ranging from equations of motion of black holes and numerical relativity to quantum gravity.Comment: 25 pages, 1 figure. Minor typos corrected, reference adde

    Loop Quantum Geometry: A primer

    Full text link
    This is the written version of a lecture given at the ``VI Mexican School of Gravitation and Mathematical Physics" (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-experts interested in learning the basics of the subject.Comment: 25 pages. Contribution for the Proceedings of the VI Mexican School of Gravitation and Mathematical Physics. Corrected typo

    Quantization of Midisuperspace Models

    Get PDF
    We give a comprehensive review of the quantization of midisuperspace models. Though the main focus of the paper is on quantum aspects, we also provide an introduction to several classical points related to the definition of these models. We cover some important issues, in particular, the use of the principle of symmetric criticality as a very useful tool to obtain the required Hamiltonian formulations. Two main types of reductions are discussed: those involving metrics with two Killing vector fields and spherically symmetric models. We also review the more general models obtained by coupling matter fields to these systems. Throughout the paper we give separate discussions for standard quantizations using geometrodynamical variables and those relying on loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit
    corecore